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Abstract: A fast algorithm is presented to solve
for the scattered field of a two-dimensional,
dielectric-coated conducting cylinder using a
hybrid of a combined field surface integral equa-
tion and volume integral equation. The fast algo-
rithm is an extension of the fast multipole method
and it relies on the translation of scattering
centers to speed up the matrix—vector multiplica-
tion in the conjugate gradient method. The scat-
terer is first divided into many subscatterers.
Instead of directly computing the matrix—vector
multiplication, which needs N2 multiplications, an
efficient approach is used to reduce the floating-
point operation count required. The algorithm has
a computational complexity of O(N!-5).

1 Introduction

Computation of the scattering solution by two-
dimensional (2D) conducting cylinders is a classical elec-
tromagnetic problem, and many algorithms have been
developed for this purpose [1-6]. In most cases, the
problem is converted into an integral equation where the
unknown function is the induced current distribution.
The integral equation is then solved by the method of
moments (MOM) [7] which requires O(N?) floating-
point operations if Gaussian elimination is used to invert
the N by N matrix, or N2 operations per iteration if the
conjugate gradient (CG) method is used [8].

Recently, Rokhlin [9] has developed a fast multipole
method for acoustic wave scattering problems. The
method has been applied to electromagnetic scattering
computation of the E_-polarised case by Engheta et al.
[10]. In this paper, we will extend the algorithm to the
H ,-polarised case and apply it to calculate the scattering
solution of dielectric-coated conducting cylinders. A
combined-field surface integral equation [11, 12, 13] will
be used to remove the internal resonance problem for the
metallic scatterer, and a hybrid combined-field surface
integral equation and volume integral equation will be
used to solve the problem involving dielectric coating.
We shall also present an alternate derivation and physi-
cal interpretation of this fast algorithm. As will be
obvious from the derivation, the waves are expressed as
plane waves as they propagate from one scattering centre
to another.
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In this algorithm, a metallic scatterer is first decom-
posed into N subscatterers [9]. When there is an incident
wave, each subscatterer will carry a current distribution
which is determined by the interaction equation (the dis-
cretised integral equation). To compute the total field at a
subscatterer due to the other subscatterer, one needs at
least N multiplications. Since there are N subscatterers
N? multiplications are needed to compute the total inter-
actions among them. These N2 interactions correspond
to a matrix-vector multiplication in a conjugate-gradient
method.

The fast multipole method [9] is designed to account
for this interaction more efficiently. The idea is first to
divide the subscatterers into groups. Then, the addition
theorem of Bessel functions (or the translation matrix) is
used to translate the scattered field of different scattering
centres within a group into a single centre (called group
centre). Hence, one scattering centre represents the scat-
tered field of a group of centres, reducing the number of
scattering centres. Similarly, for each group, the field
scattered by all the other group centres can be first
‘received’ by the group centre, and then redistributed to
the subscatters belonging to the group.

In fact, since each subscatterer is a monopole (for the
E, wave) or a dipole (for the H, case), the group centre
will be a higher-order multipole. Hence, the reduction in
the number of scattering centres is at the expense of
increasing the order of the multipoles. However, it can be
shown that by appropriately selecting the size of the
groups and diagonalising the translation matrices with
plane-wave basis, the number of floating-point operations
needed to compute the overall interaction can be reduced
from N2 to N*-*. A further nesting of the algorithm yields
an O(N'-33) algorithm.

2 New look at the fast multipole method

The fast multiple method [9] is designed to speed up the
matrix-vector multiplication in the CG method when
CG is used to solve a surface integral equation. We shall
present here a more succinct derivation of this algorithm.

As an example, the surface integral equation which
governs the scattering solution of a metallic scatterer by
E,-polarised waves is given by

iop, J dS'golp — p).(p) = —E™(p) pesS )
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In the above
o )
golp — p) = ; Hklp — p']) @
J.(p) is the induced current on the surface of the scat-

terer and E™(p) is the incident field. The above integral
equation can be discretised [7] to yield

N
izgﬂdi=bj j=L4L...,N 3
=1 ;

where

w—%[l +-2-l]n(&>:| Aii=j
4 n 4e
9= o (4a)
—4_0 AiH(ol)("Pﬁ) i#j
bj = E;M(I’j) (4b)
a=J{p) (40)

where p;; = | p; — p;| and (y/4e) = 0.163805. The matrix—
vector multiplication, ', g;;a;, is the bottleneck in the
speed of the CG algorithm. The fast multipole method
expedites this matrix—vector multiplication. This is
achieved by dividing the N subscatterers into groups,
each of which contains M subscatterers. Hence, there are
N/M groups altogether. Furthermore, the translational
addition theorem can be used to rewrite g;. Using the
notation developed by us previously [14-18], we can
write
1xP PxP Px1

H{)"("Pﬁ) =By &y - By 6]

where I’ and [ are the centres of the I'th and Ith groups,
respectively (Fig. 1) and & and f are defined in Refer-

Fig. 1 For an arbitrarily-shaped surface scatterer (e.g. metallic
scatterer), the scatterer is dec d into N subscatterers. The N sub-
scatterers are divided into groups of size 0(\/ N). The interaction between
the sub ers are calculated via their group interactions

ences 15-18. They are given here explicitly as
[&l’l]nm = Hg—) m(ko pl'l)e i (Sa)
(8 Jl']n =Jkop jl')e_‘u'"‘ ) (5b)

where ¢, is the angle the line p,,, makes with the x-axis
and similarly for ¢ .. Using eqn. 5, we can rewrite eqn. 3

456

as
N/M
7779 _
‘—4 ﬂﬁt' Z %y Z Bila; = b}
i=1 ieGy
1£1

j€G, I'=1,...,N/M (6

for interactions between elements of group G, and group
G, only. In the above, b is used to indicate interactions
excluding the interaction within the same group. For
interactions between elements within the same group,
eqn. 3 is still used.

To maintain the accuracy of eqn. 5, P &~ ¢cM because
the number of cylindrical harmonics P needed in eqn. 5 is
proportional to the size of the group, and M is pro-
portional to the size of the group. Hence, the cost of com-
putinge, =Y, g BuAia;,1=1,..., N/Mis

N
T =clﬁM2=c1NM U

The cost of computing d; =Y ¥ &, - ¢, I=1,..., NJM
is

N 2
T= o) ME = ey ®
The cost of computing g}, - d,., j € G,.,I,..., N/M is

T, = cs(%) M?=c,NM )

Therefore, there is little advantage at this point in
rewriting eqn. 3 as eqn. 6 as now the cost of performing
eqn. 6 still requires O(N?) operations. However, the cost
of calculating eqn. 6 can be substantially reduced if & can
be diagonalised.

To this end, we substitute in the definition of & and g
[18] in eqn. 5, so that it can be written as

Hkp) = 3 Jollpyleimen=

0
X 3 HUL (kpy e im -

x J(kpiJe =" (10)

Even though HY) (x)» o when |m—n|— oo, the
above summations converge because J,(x)—0, when
|n| — co. Notice that the inner summation in the above is
the convolution of two discrete Fourier series. Therefore,
it can be expressed as a product of two functions if their
respective discrete Fourier transforms (DFT) can be
found. Unfortunately, the DFT of H(x)e”"* does not
exist since H{Y(x) > co when |p|— co. However, we can
truncate the inner summation since it converges and
express eqn. 10 as

HMkppy= Y J ke Jeimen =)

m=—q
m+P

x 3 HU kpyje i mon

n=m-—pP
x J,(kp,)e ™ (11)

Eqn. 11 can be expressed in the Fourier space by using
the integral representation of the Bessel function [15, p.
62]

2n
Jm(kpﬂ,)el'méﬂ' = 51; J. doe’*Pi cos (a—jr) +imla - (x/2)) (12(1)
0
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2n
J(kpy)e i = %{ f do'g*eu o0 (' + du)+inla’ - /21 (1)
(1}

Using eqn. 12 in eqn. 11, exchanging the order of integra-
tion and summation, we have

1 (> - ~

H(kp W= E J; dof () (o)) (13)

where
P
&Gfo)= ) H o (kpyJe ™ Pior1=a (/) (14)
p=-P

and

ﬁﬂl(a) = eikpjl' cos (a —jiy ﬁ‘ x(“) = eikpu cos (¢ — i) (1 5)

Notice that now, cylindrical waves are replaced by plane
waves in the integrand of eqn. 13. Also, & is now replaced
by a diagonal operator &, {x). Notice now that the series
in eqn. 14 diverges if P is increased indefinitely. This
results from the exchange of the order of summation and
integration.

Using eqn. 13 in replacement of eqn. 5 in eqn. 6, we
have

wpy 2 NM
8_ j d“ﬁjr(“) Z &) Z Eli(a)Ai & = b:,-
T Jo :: 11 ieG

jeGy, I'=1,...,N/M (16)

for intergroup interactions. The integral in eqn. 13 can be

replaced by Q-point summation yielding
Q NIM

WU, ~ ~ ’

TQO Zlﬂjl'(“q)lzl “m(“q)_zcﬁu{“q)Ai a; = bj

q= = i=Gy

'*’ jeG (7

Notice that in the above, instead of propagating the field

from one group to another using cylindrical waves, one

has effectively used plane waves. These plane waves

diagonalise the translation operators.

It can be shown that Q above is proportional to M
from sampling theorem. With this new equation, the cost
of the first step of the calculation, Tj, is still the same.
However, the replacement of a,, with a diagonal operator
ay(o,) reduces the cost in the second stage to

Nz
=C, — 18
L=C+ (18)

The cost in the third stage is still the same. Therefore, the
total cost is

N2
T=C1H+C2NM 19

Optimising eqn. 19 with respect to M yields M =
\/[](C 1/C2)NT]. Therefore,

- S\t
T—Z\/(CZ)N” (20)

A further nesting of this algorithm within itself yields an
O(N*3) algorithm.*

3 Combined field integral equation

A straightforward solution of eqn. 1 is plagued by the
problem of internal resonances as the integral operator in

* A reviewer has suggested the possible occurence of relative con-
vergence phenomenon in this algorithm, but we have not observed it.
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eqn. 1 has null spaces at these resonant frequencies. To
overcome this, a combined field integral equation
[11-13] is used which yields an integral equation with
only complex resonant frequencies.

To obtain the combined field integral equation, we
multiply both sides of eqn. 1 by a differential operator

Pp)=1+4a-V
to obtain the combined field integral equation (CFIE)

—iwpy J;P(P)go(l’ — PV Ap)dS = P()E(p)  (21)

where 7 is the unit outward normal at p, and 4 is a
complex constant.

After discretisation, eqn. 21 can be written in a dis-
cretised form

N
ZGjiai':bj ji=14,2 ..., N (22a)
i=1
where
G 3O"kAi|:1+i£ln(%f)—i%] i=j
i = T .
30mkA; P, HG kp ) izj @
and
b; = P,E¥(p))
a;=J(p)
P,=1+1 —a— (220)
i on

j
For H, polarisation, a similar equation to eqn. 22 can be
obtained in a similar manner with b, = P; H™(p), a; =
H (p;) and

i ] . ‘
Gj=— 2 A P; o HP(kp;) i+#j (23

Using the fact that (9/0n) = n®(6/0x) + n™d/dy), where
nQ and n® are the x and y components of the unit
normal #;, we can show from eqn. 13 that

2 H{M(kp,) -1 2“dazl? (a)a z(a)‘a—ﬂ {2)
on, 0 (kp;; ), iAoty on, 1§

1 2=
= 2—7; J; daﬁﬂ'(a)&l',(a)

x [ik(n cos a + nV sin a)1fi(@) (24)

Using similar idea, we can show that
1 2z
P;HP(kp;) = 7 J. da[1 + i2k(n? cos a + n¥ sin «)]
0

X B jr(“)&l't(“)ﬁu(“) (25)

Consequently, eqn. 22 or its variant eqn. 23, after using
the discretised form of eqns. 24 or 25, becomes

Q 1 N/M
b=y = P {2y z &y day) 2 Qu(aq)": + 3y Gsa;
q=lQ =1 ieGi ieGr
1#U
jeG, I'=1,...,N/M (26)
where
Pj(ay) = [1 + iAk(n? cos a, + n? sin a,)]

x e'ken cos (ag—dyr)

@n
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30nkA, et*eucos@—ew)  E nolarisation

Qli(aq) = kAl

— 2 (D @) & ikpii cos (zq — 1)
5 (n% cos a, + nY) sin o)™
H, polarisation
(28)

The last term in eqn. 26 accounts for interaction within
the same group.

4 Dielectric coating hybrid integral equation

Now we shall discuss the application of this algorithm to
calculate the scattering solution of dielectric-coated con-
ducting cylinders. Generally, the coating material is mod-
elled by small circular dielectric cylinders as is done by
many other authors [18-20]. The equations governing
the induced current on the conducting surface will be the
same as eqn. 22 except that the contribution from the
dielectric region is added to the equations.

When an inhomogeneous dielectric scatterer is closed
to a metallic scatterer, the total scattered field from the
scatterers for E, polarisation is

EF*(p) = iop, LdS'go(p — P Ap)

+ J;dV'go(P = Pk p) — KGIEL(p)  (29)

where E(p) = E™(p') + E¥*(p’). The boundary condition
on the metallic surface is EX*(p’) = — E*(p’). The dielec-
tric region can be replaced by circular dielectric sub-
scatterers [18-20]. Hence, the second part of eqn. 29 can
be discretised and expressed as

N/
EZ*(p) = iopo _[ds’yo(ll - L)+ .:% 1ll/o(l’.-)a.- (30)

This is because each dielectric subscatterer scatters like a
monopole for E, polarisation. If the isolated T-matrix of
each dielectric subscatterer is known, then the constraint
condition on each dielectric subscatterer is that [15, 18]

4;=TEp) j=N+1,..,N' @1)

Therefore, discretising the first part of eqn. 30 as well as
before, and imposing the boundary condition on the
metallic surface analogous to eqn. 3, we have

N N
Zgjiai - 2 '/’o(l’j.')ai = bj j=1.,N (32)
i=1 i=N+1
Imposing eqn. 31 on the dielectric subscatterers, we have
N Ny
a; = ’I}(l){ET(Pj) - Zlgji a; + ; Wo(ﬂji)ai}
i= i=N+1

j=N+1,..,N (33)

Eqns. 32 and 33 constitute N’ equations for the N’
unknowns a;, i =1, ..., N'. However, it is still plagued
with internal resonances from the metallic scatterer. To
overcome this, eqn. 30 is operated upon by the P(p) oper-
ator before the boundary condition is imposed on the
metallic surface. By so doing, we convert eqn. 32 to

N N7
Z Gjiai - Z PJ'/’o(Pﬁ)ai = bj j=1L,..,N (34)
i=1 i=N+1

analogous to eqn. 22a. Eqns. 33 and 34 constitute the
equations free of internal resonance problem. The fast
multipole method can be used to speed up the matrix—

458

vector multiplication as before, if the dielectric region is a
thin coating on the metallic scatterer.

Similar equations can be derived for H, polarisation.
In this case, the expression for the scattered field looks
like

9go(p — p)

pw H[p)

Hz*(p) = f as'
S

+ J;dVVgo(P — e, (p) — 11VH (p) (35)

For this polarisation, the scattered field of a small dielec-
tric cylinder is y'(p) - a, where a contains the harmonics
coefficient to represent a dipole scattered field. It is
related to incident wave ¢™ = y(p) - a, by the isolated
T-matrix [15-18] such that

a=1T, -a, (36)

Discretising the integral equation as before and using the
idea of combined field integral equation, we can form the
equations for coated-conductor cylinders as

N N/
'=21Gjiai + Z IPj'l"(Pji) ca;=b;

=N+
i=1,2,..,N (37a)
_ N N
a;= ij ' {pjoao + izliji “Pia; + i_NE #j&ji : ai}

J=N+1LN+2 .., N (37

where p; is the polarisation vector p! = [kn;/2, 0, kn*/2].

5 Numerical results

To verify the algorithm, the RCS of a conducting circular
cylinder is calculated for different radius (R) and com-
pared with exact solutions (closed form solution).

Fig. 2A shows the RCS of an E,-polarised wave at 0°
incidence of a circular cylinder with radius R = 1.96584,

25,

— exact solution
+++ this method

RCS.dB

0

0 50 100 150 200 250 300 350
Fig. 2A  RCS of an E_-polarised wave at 0° incidence of a circular

conducting cylinder with radius R = 1.96582, where internal resonance
occurs

(for this cylinder, internal resonances occur at R =
1.96584, and R = 2.07144,). Fig. 2B shows the current
distribution derived by this method using the combined
field integral equation (CFIE) after nine iterations, and
this method using the electric field integral equation
(EFIE) after 83 iterations. The smooth current distribu-
tion of this method with the CFIE shows that the result
is not affected by internal resonances, whereas if the

IEE PROCEEDINGS-H, Vol. 140, No. 6, DECEMBER 1993



EFIE is used with this method, the error is quite large
even after 83 iterations. A similar result is obtained for
the R = 2.07144,, case.

© EFIE

2.5[-.: +++ CFIE
— exact solution

@
el
2
g 15
o
£
$
=
3
(o)
0}

100 150 200 250 300 350
observation angle, deg

0 50

Fig. 2B Comparison of the current distributions for the case in Fig.
2A using this method with the combined field integral equation (CFIE),
electric field integral equation (EFIE) and exact solution

Fig. 3 shows the RCS for R = 504,. In this Figure,
because of the fast oscillation, only a small portion in the
forward direction is plotted. It is seen that the agreement
with the closed-form solution is excellent both for scat-
tered field and induced current distribution.

50p
e this method

— exact solution
451

40t
35t
30t . A
R

20}

RCS,dB

15- o 1l

]0 1 1 1 L 1 1 vl 1 1 1
175 176 177 178 179 180 181 182 183 184 185
observation angle, deg

Fig. 3  RCS for a circular conducting cylinder with R = 504,

In Fig. 4, the increase of CPU time with unknowns N
is plotted on a log-log scale. We find that the slope of the
curve is approximately 1.5, showing the relationship
CPU time oc N5,

Fig. SA shows the RCS for a dielectric-coated circular
conducting cylinder for E,-polarised incident waves. Fig.
5B similarly shows that for H,-polarised incident waves.
The radius of the circular cylinder is 24, and the thick-
ness of the coating is 0.0474,, with & =2+ i0.2 and
4, = 1.4 +i0.672. The frequency is 300 MHz. From the
Figure we can see that, even for lossy material coating,
the computed result and the closed-form solution agree
well,

Fig. 6 shows the RCS for a dielectric-coated ogive cal-
culated using this method and RATMA (recursive aggre-

IEE PROCEEDINGS-H, Vol. 140, No. 6, DECEMBER 1993

gate T matrix algorithm) [21] for E, polarisation. The
results are in excellent agreement. The ogive is made
from two arcs with radius of curvature of 31,. The height
of the ogive is 14, while the thickness of the dielectric

104
~- CG method
— this method
103}
] 102}
v
£
W
a 10
(&)
100k
]O-Y " n ]
10! 102 103 104
number of unknowns
Fig. 4 Increase of CPU time with unknowns N plotted on a log-log
scale
25
e this method
— exact solution
o
°
e
(&)
@
0 1 1 ]
0 60 120 180
a
5r
® this method
~ exact solution
o
©
o
(&)
[°4

_] 1 L ]
50 60 120 180
observetion angle, deg
b

Fig. 5 RCS for dielecric-coated circular conducting cylinder. Radius
of the circular cylinder is 24, and the thickness of the coating is 0.0472,,
withe, = 2+ i0.2 and p, = 14 + i0.672. The frequency is 300 MHz

a E -polarised incident waves

b H,-polarised incident waves
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coating is 0.0494, . The incident wave is at 90°, normal to
the long axis of the ogive. The dielectric coating has ¢, =
2 +i0.2and yu, = 1.

20p
® this method
— RATMA

15F

10

RCS,dB

of ..
L ° ° L]
-5 A 1 I 1 L 2
0 60 120 180 240 300 360

observation angle, deg

Fig. 8  RCS for a dielectric-coated ogive calculated using this method
and RATMA (recursive aggregate T matrix algorithm) for E, polarisa-
tion

6 Conclusion

A fast algorithm is developed for the scattering calcu-
lation of conducting cylinders for both H, and E, polari-
sation. Internal resonance problem is removed by using a
combined field integral equation. We also extend the
algorithm for dielectric-coated conducting cylinders using
a hybrid of a combined field surface integral equation
and a volume integral equation. Provided that the
coating is thin (typically less that 0.1 wavelength), the fast
multipole method is used to accelerate the speed of the
solution. The computed result for a different size cylinder
is in good agreement with the exact series solution. The
speed of the algorithm is much faster than both the N3
and N? algorithm. Hence, it can be applied to much
larger objects.
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