
The field or wave in a transmission line is TEM (Transmission Electromagnetic) because both the \mathbf{H}-field and the \mathbf{E}-field are transverse to the direction of propagation. If the wave is propagating in the \hat{z}-direction, then both E_z and H_z are zero for such a wave. In such a case, the fields are

$$\mathbf{E} = E_s, \mathbf{H} = H_s,$$

(1)

where we have used the subscript s to denote fields transverse to the direction of propagation. We can also define a del operation such that

$$\nabla = \nabla_s + \hat{z}\frac{\partial}{\partial z},$$

(2)

where ∇_s is transverse to the \hat{z}-direction, and in Cartesian coordinate, it is $\nabla_s = \hat{x}\frac{\partial}{\partial x} + \hat{y}\frac{\partial}{\partial y}$. From

$$\nabla \times \mathbf{H} = \epsilon \frac{\partial \mathbf{E}}{\partial t},$$

(3)

or

$$\left(\nabla_s + \hat{z}\frac{\partial}{\partial z}\right) \times \mathbf{H}_s = \epsilon \frac{\partial \mathbf{E}_s}{\partial t}. \quad (4)$$

Since $\nabla \times \mathbf{H}_s$ points in the \hat{z}-direction, $\hat{z}\frac{\partial}{\partial z} \times \mathbf{H}_s$ is \hat{z}-directed, we have

$$\nabla_s \times \mathbf{H}_s = 0,$$ \hspace{1cm} (5)

$$\frac{\partial}{\partial z} (\hat{z} \times \mathbf{H}_s) = \epsilon \frac{\partial \mathbf{E}_s}{\partial t}. \hspace{1cm} (6)$$

Similarly, from $\nabla_s \times \mathbf{E}_s = -\mu \frac{\partial \mathbf{H}_s}{\partial t}$, we can show that

$$\nabla_s \times \mathbf{E}_s = 0,$$ \hspace{1cm} (7)

$$\frac{\partial}{\partial z} (\hat{z} \times \mathbf{E}_s) = -\mu \frac{\partial \mathbf{H}_s}{\partial t}. \hspace{1cm} (8)$$

Equations (5) and (7) shows that the transverse curl of the fields are zero. This implies that the fields in the transverse directions of a transmission line resembles that of the electrostatic fields. Furthermore, Equations (6) and (8) couple the \mathbf{E}_s and \mathbf{H}_s fields together. These two equations are the electromagnetic field analogues of the telegrapher’s equations.
A current in a coaxial cable will produce a magnetic field polarized in the ϕ direction. From Ampere’s Law, we have

$$\oint_C \mathbf{H_s} \cdot d\mathbf{l} = \int_A \mathbf{J} \cdot ds = I, \quad (9)$$

or

$$\int_0^{2\pi} \rho \, d\phi H_\phi = I. \quad (10)$$

Hence,

$$H_\phi(\rho, z, t) = \frac{I(z, t)}{2\pi \rho}. \quad (11)$$

If we assume that the inner conductor in the coaxial line is charged up with the line charge Q in coulomb/m, then from $\oint \mathbf{E} \cdot \mathbf{n} \, ds = Q$, we have

$$2\pi \rho \varepsilon E_\rho = Q, \quad (12)$$

or

$$E_\rho = \frac{Q}{2\pi \rho \varepsilon}. \quad (13)$$

Since the potential between a and b is $\int_a^b E_\rho \, d\rho$, we have

$$V = \int_a^b E_\rho \, d\rho = \frac{Q}{2\pi \varepsilon} \ln \left(\frac{b}{a}\right). \quad (14)$$

Hence,

$$E_\rho(\rho, z, t) = \frac{V(z, t)}{\rho \ln \left(\frac{b}{a}\right)} = \frac{Q(z, t)}{2\pi \varepsilon \rho}. \quad (15)$$

The ratio $\frac{Q}{V}$ is the capacitance per unit length, and it is

$$C = \frac{2\pi \varepsilon}{\ln \left(\frac{b}{a}\right)}. \quad (16)$$
If \(\mathbf{E}_s = \rho \mathbf{E}_\rho, \mathbf{H}_s = \phi \mathbf{H}_\phi \), equations (6) and (8) become

\[
\begin{align*}
\frac{\partial}{\partial z} H_\phi &= -\varepsilon \frac{\partial E_\rho}{\partial t}, \\
\frac{\partial}{\partial z} E_\rho &= -\mu \frac{\partial H_\phi}{\partial t}.
\end{align*}
\]

(17) \hspace{1cm} (18)

Substituting (11) for \(H_\phi \) and (15) for \(E_\rho \), we get

\[
\frac{\partial}{\partial z} I(z, t) = - \frac{2\pi \varepsilon}{\ln \left(\frac{b}{a} \right)} \frac{\partial V}{\partial t},
\]

(19)

and

\[
\frac{\partial}{\partial z} V(z, t) = - \frac{\mu \ln \left(\frac{b}{a} \right)}{2\pi} \frac{\partial I}{\partial t}.
\]

(20)

This is just the telegrapher’s equations derived from Maxwell’s equations. \(C \) is given by (16) while the inductance per unit length \(L \) is obtained by comparing (20) with the telegrapher’s equations

\[
L = \frac{\mu \ln \left(\frac{b}{a} \right)}{2\pi}.
\]

(21)

Note that the velocity of the wave on a transmission line is

\[
v = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu \varepsilon}},
\]

(22)

which is independent of the dimensions of the line. This is because all TEM waves have velocity given by \(\frac{1}{\sqrt{\mu \varepsilon}} \).