4. Using Phasor Techniques to Solve Maxwell’s Equations

For a time-harmonic (simple harmonic) signal, Maxwell’s Equations can be easily solved using phasor techniques. For example, if we let

\[\mathbf{H} = \Re \{ \hat{\mathbf{H}} e^{j\omega t} \}, \]

\[\mathbf{E} = \Re \{ \hat{\mathbf{E}} e^{j\omega t} \}, \]

and substituting into (3.1), we have

\[\Re \{ \nabla \times \hat{\mathbf{H}} e^{j\omega t} \} = \Re \left[\frac{\partial}{\partial t} \hat{\mathbf{E}} e^{j\omega t} \right]. \]

(3)

We could replace \(\frac{\partial}{\partial t} \) by \(j\omega \) since the signal is time harmonic. Furthermore, we can remove the \(\Re \) operator and obtain

\[\nabla \times \hat{\mathbf{H}} e^{j\omega t} = j\omega \varepsilon \hat{\mathbf{E}} e^{j\omega t}, \]

(4)

where \(e^{j\omega t} \) cancels out on both sides.

Equation (4) implies Equation (3). Also, any time dependence cancels out in the problem. Hence,

\[\nabla \times \hat{\mathbf{H}} = j\omega \varepsilon \hat{\mathbf{E}}. \]

(5)

Similarly,

\[\nabla \times \hat{\mathbf{E}} = -j\omega \mu \hat{\mathbf{H}}, \]

\[\nabla \cdot \mu \hat{\mathbf{H}} = 0, \]

\[\nabla \cdot \varepsilon \hat{\mathbf{E}} = 0. \]

(6-8)

Taking the curl of (6) and substituting (5) into it, we have

\[\nabla \times \nabla \times \hat{\mathbf{E}} = -j\omega \mu \nabla \times \hat{\mathbf{H}} = \omega^2 \mu \varepsilon \hat{\mathbf{E}}. \]

(9)

Again, making use of the identity \(\nabla \times \nabla \times \hat{\mathbf{E}} = \nabla (\nabla \cdot \hat{\mathbf{E}}) - \nabla^2 \hat{\mathbf{E}} \), and \(\nabla \cdot \hat{\mathbf{E}} = 0 \), we have

\[\nabla^2 \hat{\mathbf{E}} = -\omega^2 \mu \varepsilon \hat{\mathbf{E}}. \]

(10)

Similarly,

\[\nabla^2 \hat{\mathbf{H}} = -\omega^2 \mu \varepsilon \hat{\mathbf{H}}. \]

(11)

These are the Helmholtz’s wave equations.

Lossy Medium (Conductive Medium)
Phasor technique is particularly appropriate for solving Maxwell’s equations in a lossy medium. In a lossy medium, Equation (3.1) becomes

\[\nabla \times \mathbf{H} = \epsilon \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}, \]

where \(\mathbf{J} \) is the induced currents in the medium, and hence,

\[\mathbf{J} = \sigma \mathbf{E}. \]

Applying phasor technique to (12), we have

\[\nabla \times \mathbf{H} = j \omega \epsilon \mathbf{E} + \sigma \mathbf{E} \]

\[= j \omega \left(\epsilon - j \frac{\sigma}{\omega} \right) \mathbf{E}. \]

We can define the quantity

\[\tilde{\epsilon} = \epsilon - j \frac{\sigma}{\omega} \]

to be the complex permittivity of the medium, and (14) becomes

\[\nabla \times \mathbf{H} = j \omega \tilde{\epsilon} \mathbf{E}. \]

Notice that the only difference between (16) and (5) is the complex permittivity versus the real permittivity. If one goes about deriving the Helmholtz wave equations for a lossy medium, the results are

\[\nabla^2 \tilde{\mathbf{E}} = -j \omega \mu \tilde{\epsilon} \tilde{\mathbf{E}}, \]

\[\nabla^2 \tilde{\mathbf{H}} = -j \omega \mu \tilde{\epsilon} \tilde{\mathbf{H}}. \]

Hence, a lossy medium is easily treated using phasor technique by replacing a real permittivity with a complex permittivity.

If we restrict ourselves to one dimension, Equation (17), for instance, becomes of the form

\[\frac{d^2}{dz^2} \tilde{E}_x(z) - \gamma^2 \tilde{E}_x(z) = 0, \]

where

\[\gamma = j \omega \sqrt{\mu \epsilon} = j \omega \sqrt{\mu \left(\epsilon - j \frac{\sigma}{\omega} \right)} = \alpha + j \beta. \]

The general solution to (19) is of the form

\[\tilde{E}_x(z) = C_1 e^{-\gamma z} + C_2 e^{+\gamma z}. \]

In real space time,

\[E_x(z, t) = \Re \left[\tilde{E}_x(z) e^{j \omega t} \right] \]

\[= \Re \left[C_1 e^{-\gamma z} e^{j \omega t} \right] + \Re \left[C_2 e^{+\gamma z} e^{j \omega t} \right] \]
If \(C_1 = |C_1| e^{j\phi_1}, \quad C_2 = |C_2| e^{j\phi_2}, \quad \gamma = \alpha + j\beta, \) then

\[
E_x(z, t) = |C_1| \cos(\omega t - \beta z + \phi_1)e^{-\alpha z} + |C_2| \cos(\omega t + \beta z + \phi_2)e^{\alpha z}. \tag{24}
\]

Note that one of the solutions in (24) is decaying with \(z \) while another solution is growing with \(z \). The function \(\cos(\omega t \pm \beta z + \phi) \) can be written as \(\cos[\pm\beta(z \pm \frac{\omega}{\beta} t) + \phi] \). Hence, it moves with a velocity

\[
v = \frac{\omega}{\beta}. \tag{25}\]

Depending on its sign, it moves either in the positive or negative \(z \) direction. In the above, \(\gamma \) is the propagation constant, \(\alpha \) is the attenuation constant while \(\beta \) is the phase constant.

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world. The phasor representation of Equation (3.23) is

\[
\frac{d}{dz} \bar{E}_x = -j \omega \mu \bar{H}_y. \tag{26}
\]

A corresponding one for \(\bar{H}_y \) is

\[
\frac{d}{dz} \bar{H}_y = -j \omega \epsilon \bar{E}_x. \tag{27}\]

If we now let \(\bar{E}_x = E_0 e^{-\gamma z}, \bar{H}_y = H_0 e^{-\gamma z} \), and using them in (26) yields

\[
-\gamma E_0 e^{-\gamma z} = -j \omega \mu H_0 e^{-\gamma z}. \tag{28}\]

The above implies that

\[
\eta = \frac{E_0}{H_0} = \frac{j \omega \mu}{\gamma} = \sqrt{\frac{\mu}{\epsilon}}. \tag{29}\]

For a lossy medium, we replace \(\epsilon \) by the complex permittivity and the intrinsic impedance becomes

\[
\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu}{\epsilon - j \frac{\sigma}{\omega}}} = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \mu}}. \tag{30}\]

The above is obviously a complex number.