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�� Using Phasor Techniques to Solve Maxwell�s Equations

For a time�harmonic �simple harmonic� signal� Maxwell	s Equations can
be easily solved using phasor techniques� For example� if we let
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We could replace �
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by j� since the signal is time harmonic� Furthermore�
we can remove the �e operator and obtain
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where ej�t cancels out on both sides�
Equation ��� implies Equation ���� Also� any time dependence cancels out in
the problem� Hence�
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Taking the curl of ��� and substituting ��� into it� we have
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These are the Helmholtz	s wave equations�

Lossy Medium �Conductive Medium�
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Phasor technique is particularly appropriate for solving Maxwell	s equa�
tions in a lossy medium� In a lossy medium� Equation ���
� becomes
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where J is the induced currents in the medium� and hence�
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Applying phasor technique to �
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We can de�ne the quantity
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to be the complex permittivity of the medium� and �
�� becomes
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Notice that the only di�erence between �
�� and ��� is the complex permit�
tivity versus the real permittivity� If one goes about deriving the Helmholtz
wave equations for a lossy medium� the results are
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Hence� a lossy medium is easily treated using phasor technique by replacing
a real permittivity with a complex permittivity�

If we restrict ourselves to one dimension� Equation �
��� for instance�
becomes of the form
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The general solution to �
�� is of the form
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In real space time�
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Note that one of the solutions in ���� is decaying with z while another solution
is growing with z� The function cos��t�
z��� can be written as cos��
�z�
�
�
t� � ��� Hence� it moves with a velocity
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Depending on its sign� it moves either in the positive or negative z direction�
In the above� � is the propagation constant� 	 is the attenuation constant

while 
 is the phase constant�

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world�
The phasor representation of Equation ������ is
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A corresponding one for �Hy is
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The above implies that
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For a lossy medium� we replace � by the complex permittivity and the intrinsic
impedance becomes
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The above is obviously a complex number�
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