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20. Reflections and Refractions of Plane Waves.
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Perpendicular Case (Transverse Electric or TE case)

When an incident wave impinges on a dielectric interface, a reflected wave
as well as a transmitted wave is generated. We can express the three waves
as

E; = §Eoe P, (1)
Er = :lng_Egeijﬁr-r, (2)
Et = gTLEoe_jﬁt.r. (3)

The electric field is perpendicular to the xz plane, and 3;, 3., and 3; are their
respective directions of propagation. The 3’s are also known as propagation
vectors. In particular,

Bi = 20z + 20z,
Br = 20z — 26z,
Bie = Bt + 5.
Since E; and E, are in medium 1, we have
5+ B = 07 = wime, (
2+ B2 = 0] = WPe, (8)
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and for E; in medium 2, we have
/Bt2m + /BtZZ = /822 = {")2“262' (9)

(7), (8), and (9) are known as the dispersion relations for the components
of the propagation vectors. From the figure, we note that

ﬁim - /81 sin 91" ﬁiz - /81 Ccos 91" (10)
/81’1: = /61 sin 07’7 /Brz = /61 COos 91’, (11)
Btz = B2sinby, [i. = B2 cosb. (12)

To find the unknown p, and 7, we need to match boundary conditions for
the fields at the dielectric interface. The boundary conditions are the equality
of the tangential electric and magnetic fields on both sides of the interface.
The magnetic fields can be derived via Maxwell’s equations.

Ey

V x E, ; X Ez R “ i3,
H;, = — = B = (8Bix — #0;;) —e P (13)
—jom wm Wi
Similarly,
E .
H, = (28,, + 28,.) =2¢ 987, (14)
w1
E .
H, = (38 — 26, ) =—LeiBer, (15)
w2

Continuity of the tangential electric fields across the interface implies
Eoe—jﬁmr + pLE'ge_m”“’ — TLEOe_jBtmm. (16)

The above equation is to be satisfied for all x. This is only possible if
Bie = Bra = Btz = Be- (17)

This condition is known as phase matching. From (10), (11), and (12), we
know that (17) implies

,81 sin 0, = BI sin 9,. = ,82 sin Bt. (18)

The above implies that 8, = ;. Furthermore,

V€L sin 0; = /L€ sin 6;. (19a)

If we define a refractive index n; = | /£4%, then (19a) becomes
ny sin §; = n, sin 6;, (190)

which is the well known Snell’s Law. Consequently, equation (16) becomes
1+p =71. (20)
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From the continuity of the tangential magnetic fields, we have
Ey pLEy 7. Ey
_/Biz— + ﬁrz— = _/Btz—- (21)
w1 W W2

Since 6, = 0;, we have 3;, = (3,,. Therefore, (21) becomes

1431 /Btz
1-— PL— ——T]. 22
2 Biz (22)

Solving (20) and (22), we have

_ p2Biz — p B

pPL = 9 23
U 2B + s (23)
2“2/8722
T =—""" 24
- u2/8iz + ,u’lﬂtz ( )
Using (10), (11), and (12), we can rewrite the above as
6; — 6
P cos 71 COS 3 (25)
7)o cos B; + 1y cos b,
2 0;
7= 12 208 (26)

N2 cos B; + my cos By

If the media are non-magnetic so that puy = ps = po, we can use (19) to

rewrite (25) as
N2 cos; —my/1— Z—;sin2 0;
2 COSQ,; + M/ 1-— :—;sin2 0,

If z—; sinf; > 1, which is possible if E—; > 1, when 6; < 7, then p, is of the

form .

_A-jB
A+ jB’
which always has a magnitude of 1. In this case, all energy will be reflected.
This is known as a total internal reflection. This occurs when 6, > 6.

where \/g sinf, = 1. or

pL (28)

. e
6, = sin * i, € < €. (29)



When 6; = 6., 8; = 90° from (19). The figure below denotes the phe-
nomenon.
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When 60; > 0., B, = /32 — Fsin6;, or

=

B: = wy/fio€s <1 — < sin? 9,-) : (30)

€2

The quantity in the parenthesis is purely negative, so that
Biz = —jouz, (31)
a pure imaginary number. In this case, the electric field in medium 2 is
B, = 7 Ege /7=t (32)

The field is exponentially decaying in the positive z direction. We call such
a wave an evanescent wave, or an inhomogeneous wave as opposed to
uniform plane wave. The magnitude of a uniform plane wave is a constant
of space while the magnitude of an evanescent wave or an inhomogeneous
wave is not a constant of space. The corresponding magnetic field is

TLE

0 p—iBoz—at:z (33)

H, = (2/81 + jj%z) o
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The complex power in the transmitted wave is

2
e 2otz® (34)

We note that S, is pure real implying the presence of net time average power
flowing in the Z-direction. However, S, is pure imaginary implying that the
power that is flowing in the 2-direction is purely reactive. Hence, no net time
average power is flowing in the Z-direction.

Parallel case (Transverse Magnetic or TM case)
In this case, the electric field is parallel to the xz plane that contains the

plane of incidence.

medium 1

M1, €1

> X

Ho2, €
medium 2

as

By _,
H; = §—2e 7P, (35)
m
A E —9 -r
H, = —leun—l06 G (36)
Ey .
H, = gTHn—;e*mt'r. (37)

We put a negative sign in the definition for p; to follow the convention of
transmission line theory, where reflection coefficients are defined for voltages,
and hence has a negative sign when used for currents. The magnetic field is
the analogue of a current in transmission theory.
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In this case, the electric field has to be orthogonal to 3 and g, and they

can be derived using

s x H;
E;, = _B
WeEq
to be
g x G - 0 _
Ei — Eoff iPir (x/gzz 2/87,1:) iPir
B B
E,
(x/BTZ + Z/BT:E) p“ 0 _]ﬁr b
51
X T 0 -
E, = (-Tﬁtz Z/Bta:) ” iPer
B
Imposing the boundary conditions as before, we have
ﬁtz /81
1+p=——57
| ﬂ2 /Biz a
Uil
L=py=—1).
2
The above can be solved to give
_ €fi —€fi:  mpcosby —mcosh;
Pl @B+ e 1cosy + micosb;’
and
2628 Mo 213 cos b);

=
In (43), p; will be zero if
05 cos® B, =

Using Snell’s Law, or (19), cos?6; = 1 —
1—
H2€2

Solving the above, we get

sinf;, = ( e
H2€2

Most materials are non-magnetic in this world so that pu = g, then

Hi€r .
= sin?6; =

€08, + €18 m N 12 cos B; + 1y cos 0,-'

n? cos® 6;.

v sin? f;, and (45) becomes

H1€2
22 cos? 6.
H2€1

1 _ me 2
H2€1
prer _ pier | °
H2€1

Y

(38)
(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



The angle for #; at which p; = 0 is known as the Brewster angle. It is

given by
By =sin~" , / 2 _ tan™' A =3 (49)
€2+ €1 €1

At this angle of incident, the wave will not be reflected but totally transmit-
ted. Furthermore, we can show that

sin? 6;;, + sin? Oy, = 1, (50)
implying that
T
Oip + O = 9 (51)

On the contrary, p, can never be zero for ;1 = py or non-magnetic materials.
Hence, a plot of ‘PH‘ as a function of #; goes through a zero while the plot of
|p1| is always larger than zero for non-magnetic materials.

A

|PD|,or 14

Pl

At normal incidence, i.e., §; = 0,p;, = p| since we cannot distinguish
between perpendicular and parallel polarizations. When 6; = 90°, |p,| =
‘p”‘ = 1. On the whole, |p, | > ‘p”‘ for non-magnetic materials.

The above equations are defined for lossless media. However, for lossy
media, if we define a complex permittivity € = € — 52, Maxwell’s equations
remain unchanged. Hence, the expressions for p,, 7, p|, and 7 remain the
same, except that we replace real permittivities with complex permittivities.

For example, if medium 2 is metallic so that o — oo, then, 7, = , /22 — 0,
13

and p; = —1, and 7, = 0. Similarly, py = —1 and 7 = 0.



