W.C.Chew
ECE 350 Lecture Notes

24. Dielectric Waveguides (Slab).

When a wave is incident from a medium with higher dielectric constant
at an interface of two dielectric media, total internal reflection occurs
when the angle of incident is larger than the critical angle. This fact can
be used to make waves bouncing between two interfaces of a dielectric slab
to be guided
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Since total internal reflection occurs for both TE and TM waves, guidance
is possible for both types of waves

I. TE Case E = §E,

E, is a solution to the wave equation in each region. In region 0, we
assume a solution of the form

Eo, = E'Oe—jﬁomr—jﬁzz’ (1)

where
Bon + 07 = wPoeo = 55 (1a)
In region 1, we assume a solution of the form

Ey, = [A1e77P1=" | B, eiP1eT]emiP:2 (2)

where
Ble + B2 = wime = 67 (2a)

In region 2, the solution is of the form
By, = E2ejB2mm_j:322, (3)

where
Bre + B2 = wnoer = G5 (3a)
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We assume that all the solutions in the three regions to have the same z-
variation of e 7%:* by the phase matching condition.

In region 1, we have an up-going wave as well as a down-going wave. The
two waves have to be related by the reflection coefficient p, for the electric
field at the boundaries. p, is derived earlier in the course. Therefore at

x = g, we have

Bye??=7 = pig, Aye e, (4)
where p1g, is the reflection coefficient at the regions 1 and 0 interface. At
r= —g, we have

Alejﬁlm% — p12¢B16_]‘B“‘%, (5)

where p1o, is the reflection coefficient at the regions 1 and 2 interface. Mul-
tiplying equations (4) and (5) together, we have,

A1 B¢ = p15| p1gL Ay Bre 777, (6)
A; and B; are non-zero only if

1 = prasproLe 3P, (7)

The above is known as the guidance condition of a dielectric slab waveg-
uide. If medium 3 is equal to medium 1, then p15, = p101, and the guidance
condition becomes

S Q

From before, for a wave incident at an angle 6,

1o cos f — ny cos 6"

(9)

ProL = M9 cos O + 1y cos "

Since By, = (1 cosb, By, = PBocosh”, (9) could be written as
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prot = %5193 + %ﬁ&v  p0B1e + 1B (10)
Taking the square root of (8), we have
proLe Pt = 41, (11)
When we choose the plus sign, B; = A; from (4), and from (2)
Ey, = 24, cos(Brz)e 7P* = even in x. (12)
When we choose the minus sign in (11) we have B; = —A;, and
Ey, = —2jA; sin(Bi,x)e ™ = odd in x. (13)
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Multiplying (11) by ¢’%125 and manipulating, we have

d d oo d .

%BM’E tan (/Bla:§> = ]BOJ'E even solutions, (14)
d d oo d .

%51935 cot (/Bla:§> = ]BOJ'E odd solutions. (15)

Subtracting (1a) from (2a) and solving for (., we have

Bow = [w2(uoﬁo — pi€r) + 51293]%- (16)

In order for (14) and (15) to be satisfied, [y, has to be pure imaginary. In
other words, the waves in region 0 and 3 have to be evanescent and decay
exponentially away from the slab. Hence

Boz = —Jjoe = _j[wz(ﬂlfl — [o€o) — 5121:]%, (17)
and (14) and (15) become

d d & 2 _
Blm tan ﬁm = Qe = w(pi€; — ,uoeo) ﬁ'u even solutions,
(18)

d d d 2 >
_Ho o= COt Bip— = Qp— = \/w2(,u161 uge(;)— - <51m > odd solutions.
D) 2 2

(19)
We can solve the above graphically by plotting
d d
Y = @glm— tan (ﬂu-) even solutions, (20)
p 2 2
d d
ys = _Hao 12— COt (ﬁm—) odd solutions, (21)
p 2 2

2 2 %
Y3 = [wz(ﬂlfl —,U0€0)d (ﬁlm > ] = aOmg- (22)
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y3 is the equation of a circle; the radius of the circle is given by

1 d
w(pr€r — Mofo)ii- (23)

The solutions to (18) and (19) are given by the intersections of y; with y; and
y2. We note from (23) that the radius of the circle can be increased in three
ways; (i) by increasing the frequency, (ii) by increasing the contrast ﬁ, and
(iii) by increasing the thickness d of the slab.

When [y, = —jag,, the reflection coeflicient is
et | o x . _ Qg
proL = o _7.M1 0z _ exp [+2] tan~—! (Nl 0 >] : (24)
poBiz — JH100e o1z
and |p1o.| = 1. Hence there is total internal reflections and the wave is

guided by total internal reflections. Cut-off occurs when the total internal
reflection ceases to occur, i.e. when the frequency decreases such that g, = 0.
From the diagram, we see that ag, = 0 when

1
2

[\ =W
3
3

w(pr€r — po€g)2 = = —, m=0,1,2,3,..., (25)

or
mm
Wine = -, m=20,1,2,3,.... (26)
d(p€1 — o€o)?
The mode that corresponds to the m-th cut-off frequency above is labeled
the TE,, mode. TE, mode is the mode that has no cut-off or propagates at

all frequencies.

At cut-off, ag, = 0, and from (1a),

B. = wy/Hoko, (27)

for all the modes. Hence, both the group and the phase velocities are that of
the outer region. This is because when ag, = 0, the wave is not evanescent
outside, and most of the energy of the mode is carried by the exterior field.

When w — oo, B1, — % from the diagram for all the modes. From (2a),

/Bz = \/ u)2,U161 - /61293 R W/ €1, W — 0. (28)

Hence the group and phase velocities approach that of the dielectric slab.
This is because when w — 0o, g, — 00, and all the fields are trapped in the
slab and propagating within it.

Because of this, the dispersion diagram of the different modes appear as
below.
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II. TM Case H=yH,

For the TM case, a similar guidance condition analogous to (27) can be
derived '
1= proyyproje 7=, (29)

where p is the reflection coefficient for the TM field. Similar derivations show
that the above guidance condition, for €3 = €g, s = g, reduces to

d d e d\’
6—0512— tan B, -~ = w2(ﬂ161 - MOGO)— — | Bre= even solution,
€1 2 2 4 2 (30)

d d 2 d\’
_@ﬁlm_ cot Biam = || w(p1er — po€o) — — | Bres odd solution.
€ 2 2 4 2 (31)
Note that for equations (7) and (29), when we have two parallel metallic

plates, py = 1, and p; = +1, and the guidance condition becomes

mT
—  m=0,1,2,..., (32)

which is what we have observed before.



