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��� Wave Polarization�

We learnt that

E � �xEx � �xE� cos��t� �z�� �	�

is a solution to the wave equation because r �E � �� Similarly


E � �yEy � �yE� cos��t� �z � ��� ���

is also a solution to the wave equation� Solutions �	� and ��� are known as
linearly polarized waves
 because the electric eld or the magnetic eld are
polarized in only one direction� However
 a linear superposition of �	� and
��� are still a solution to Maxwell�s equation

E � �xEx�z� t� � �yEy�z� t�� ���

If we observe this eld at z � �
 it is

E � �xE� cos�t� �yE� cos��t� ��� ���

When � � ���


Ex � E� cos�t Ey � E� cos��t� ����� ���

When �t � ��� Ex � E�� Ey � �� ���

When �t � ���� Ex �
E�p
�
� Ey � �E�p

�
� ���

When �t � ���� Ex � �� Ey � �E�� ���

When �t � 	���� Ex � �E�p
�
� Ey � �E�p

�
� ���

When �t � 	���� Ex � �E�� Ey � �� �	��

If we continue further
 we can sketch out the tip of the vector eld E� It
traces out an ellipse as shown when E� �� E�� Such a wave is known as an
elliptically polarized wave�
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When E� � E�
 the ellipse becomes a circle
 and the wave is known as
a circularly polarized wave� When � is ����
 the vector E rotates in the
counter�clockwise direction�

A wave is classied as left hand elliptically �circularly� polarized when
the wave is approaching the viewer� A counterclockwise rotation is classied
as right hand elliptically �circularly� polarized�

When � �� ����
 the tip of the vector E traces out a tilted ellipse� We
can show this by expanding Ey in ����

Ey � E� cos�t cos�� E� sin�t sin�
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Rearranging terms
 we get

aE�

x
� bExEy � cE�

y
� 	� �	��

where
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Equation �	�� is of the form

ax� � bxy � cy� � 	� �	��

which is the equation of a tilted ellipse�
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The equation of an ellipse in its self coordinate is�
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where A and B are the semi�axes of the ellipse� However


x� � x cos � � y sin �� �	��

y� � x sin � � y cos �� �	��

we have
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Equating �	�� and �	��
 we can deduce that
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AR is the axial ratio which is the ratio of the two axes of the ellipse� It is
dened to be larger than one always�
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