W.C.Chew
ECE 350 Lecture Notes

21. Infinite Parallel Plate Waveguide.
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We have studied TEM (transverse electromagnetic) waves between two
pieces of parallel conductors in the transmission line theory. We shall study
other kinds of waves between two infinite parallel plates, or planes. We have
learnt earlier that for a plane wave incident on a plane interface, the wave
can be categorized into TE (transverse electric) with electric field polarized in
the y-direction. Hence, between a parallel plate waveguide, we shall look for
solutions of TE type with E = gE,, or TM (transverse magnetic) type with
H = yH,. We shall assume that the field does not vary in the y-direction so
that 2 = 0.

We have shown earlier that if V - E = 0, the equation for the E field in a
source region is

(V2 + w?ue)E = 0. (1)
If V-H = 0, the equation for the H field is

(V2 + w?ue)H = 0. (2)
Since 3% =0, V2= 3‘9—; + 3‘9—; in these two equations.
I. TM Case, H = yH,.

In this case,
0? 0?
(W + ﬁ + w2,ue> Hy = 0. (3)



If we assume that .
H, = A(z)e 7%, (4)

substituting (4) into (3), we have

{£;+wme—@yM@:0- (5)
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Letting 32 = w?ue — 32, (5) becomes

d? 5
s 2] Al =0 ©
where the independent solutions are
cos B,x
A(z) = . 7
(z) { sin 3,x (™)
Hence, H, is of the form
cos B,x .
H,=H iP=z 8
g °{ﬁnmx}e ! ®)
where
B2+ 67 = wine = B2, (9)

which are the dispersion relation for plane waves. We can also define
B = Bcosb, B, = Bsinf so that (9) is automatically satisfied.

To decide a viable solution from (8), we look at the boundary conditions
for the E-field at the metallic plates. From V x H = jweE, we have

0 0
ju)GEw = 8_sz — &Hy, (]_0)
(where %Hz = 0 in the above equation) or
B. cos Bpx| .
E,="“H, iP== 11
we U\ sin By ¢ ’ (11)
and 5 5
jWGEz = %Hy - 8—yHm, (12)

(where %Hm = 0 in the above equation) or

B P HO{ Smﬂmx} e, (13)

_jwe —cos Byx
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The boundary conditions require that E,(z = 0) = E,(z = b) = 0. Only the
first solution gives E.(x = 0) = 0. Hence, we eliminate the second solution,
or

E, = —,ﬁ—mHO sin(B,x)e 7P+, (14)
Jwe
In order for E,(x = b) = 0, we require that
sin 3,b = 0, (15)
or
B.b = mm, m=0,+1,+2,+3,..., (16)
and consequently,
ﬁng, m=0,+1,42,43,.... (17)

This is known as the guidance condition for the waveguide. Finally, we
have

H, = H,cos (%x) e IP=7 (18)
E, = &HO cos (w) e P2, (19)
we b
mm mmx ,

B = - s ( ) ~ipez, 20
Jjweb oS\ )¢ (20)

where )

mm\ 2] 2
B. = [w2u€ - (T) ] ) (21)

which is the dispersion relation for the parallel plate waveguide. Equation
(18) can be written as

Hy . . : : Ho\ ig.aj Ba—j

The first term in the above represents a plane wave propagating in the positive
Z-direction and the negative Z-direction, while the second term corresponds
to a wave propagating in the positive x and z directions. Hence, the field in
between a parallel plate waveguide consists of a plane wave bouncing back
and forth between the two plates, as shown.

L — E:Q Bx+%[32

z d

|— E=—Q[3x+/2\[32




Since we define 3, = (Bcosf, 3, = (Fsinf, the wave propagates in a di-
rection making an angle # with the Z-direction. Since the guidance condition

requires that 3, = 5% = [cosf, the plane wave can be guided only for
discrete values of 6.

From (21), we note that for different m’s, 3, will assume different values.
When m = 0, 8. = w,/ne, E. = 0, and we have a TEM mode. When
m > 0, we have a TM mode of order m; we call it a TM,, mode. Hence,
there are infinitely many solutions to Maxwell’s equations between a parallel
plate waveguide with the field given by (18), (19), (20), and the dispersion
relation given by (21) where m =0,1,2,3,....

I1I. Cutoff Frequency

From (21), for a given TM,, mode, if w,/je < %*, then 3, is pure imag-
inary. In this case, the wave is purely decaying in the Z-direction, and it is
evanescent and non-propagating. For a given TM,, mode, we can always
lower the frequency so that this occurs. When this happens, we say that the
mode is cut off. The cutoff frequency is the frequency for which a given
TM,, mode becomes cutoff when the frequency of the TM,, mode is lower
than this cutoff frequency. Hence,

mm m muv

. oo m _m 23
Wme = g2 OF Jme = e = oy (23)
When
(m+ 1)v mv _ (m—1v _ (m—2)
T f> 5n > op oy 0, (24)

the TEM mode plus all the TM,, modes, where 0 < n < m are propagating
or guided while the TM,,,; and higher order modes are evanescent or
cutoff. For the parallel plate waveguide, there is one mode with zero cutoff
frequency and hence is guided for all frequencies. This is the TEM mode
which is equivalent to the transmission line mode.

The wavelength that corresponds to the cutoff frequency is known as the
cutoff wavelength, i.e.,

v 2b
TS (25)
When A < A, the corresponding TM,,, mode will be guided. You can think
of A\ as some kind of the “size” of the wave, and that only when the “size” of
the wave is less than \,,. can a wave “enter” the waveguide. Notice that A,
is proportional to the physical size of the waveguide.
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IV. TE Case, E = jE,.



The field for the TE case can be derived similarly to the TM case. The
electric field is polarized in the g-direction, and satisfies

0? 0?

The fields can be shown in a similar fashion to be

E, = Eysin(B,x)e 7P, (27)

H, = —&EO sin(B,x)e 7P+, (28)
Wit

H, = —,ﬁ—mEO cos(B,x)e P, (29)
jwp

The boundary conditions are

E,(x=0)=0, E,(xz=»5)=0. (30)
This gives
mm
Be = 3 (31)

as before, where 32 + (3> = w?ue. Hence, the TE,, modes have the same
dispersion relation and cut-off frequency as the TM,, mode. However, when
m =0, 3, =0, and (27)—(29) imply that we have zero field. Therefore, TE,
mode does not exist. We say that TE,, and TM,, modes are degenerate
when they have the same cutoff frequencies.

We can decompose (27) into plane waves, i.e.,

Ey — E?[ejﬁmm*jﬁzz _ efjﬁmmfjﬁzz], (32)
23
and interpret the above as bouncing waves. Compared to (22), we see that
the two bouncing waves in (32) are of the opposite signs whereas that in (22)
are of the same sign. This is because the electric field has to vanish on the
plates while the magnetic field need not.
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The sketch of the fields for TM; and TE; modes are as shown above.
For the TM mode, H, = 0, and E. # 0, while for the TE mode, E, = 0,
and H, # 0. Tangential electric field is zero on the plates while tangential
magnetic field is not zero on the plates. The above is the instantaneous field
plots. E x H is in the direction of propagation of the waves.

ITI. Phase and Group Velocities.

The phase velocity in the Z-direction of a wave in a waveguide is defined

to be

w w 1
vp = — = - ) (33)

e )] w1 ()]

which is always larger than the speed of light for f > f,... The group velocity
is

=

B wze_m2% A fme )’
. dw_(i%) :[ uw(eb)] [1 \(/;;)}

g = d/@z =
which is always less than the speed of light.
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Since 8, = ¢ [1 — (“’%)2] 2, a plot of w versus (3, is as shown. When

B, — 0, the group velocity becomes zero while the phase velocity approaches
infinity. When (8, — 00, or w — 00, the group and phase velocities both
approach the velocity of light in free-space which is the TEM wave velocity.



