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Abstract—Recurrence relations for the elements of a translation matrix in the scalar addi-
tion theorem in three-dimensions using spherical harmonics are derived. These recurrence
relations are more efficient to evaluate compared to the use of Gaunt coefficients evalu-
ated with Wigner 3j symbols or with recurrence relations. The efficient evaluation of the
addition theorem is important in a number of wave scattering calculations including fast
recursive algorithms.

I. INTRODUCTION

The use of addition theorems is central to wave scattering theory [1-3]. The de-
velopment of fast recursive algorithms recently [4-8] using translation formulas
further underscores their importance. However, there is a curious point about
the addition theorems. In two dimensions, the addition theorem exists in sim-
ple forms. The recent use of raising operators [8, p. 62] makes its derivation
even simpler. On the other hand, the addition theorem in three dimensions is
very complicated except for the monopole term. This fact warrants the further
investigation of the addition theorem in three dimensions.
The addition theorem in two dimensions is 8, p. 591}

o0
Tm(kp)e™ = S Tn_n(kp")Jn(kp)em i n=me" (1)
n=—oo

!

where Jn(z) is a cylindrical Bessel function. The relation between p, p’, and

p" is shown in Fig. 1.
If the infinite summation in (1) is truncated at N terms, it is seen that the
computational effort to calculate (1) is linearly proportional to N. In contrast,

the addition theorem in three dimensions is [8-10]

Yam(8, ®)in(kr) =Y Y Yiu(#',8")iv(kr')Bupnm (2)

v=0 p=—v
where fyunm is the element of the translation matrix. It is given by

,Bup,nm = Z 4Wi(u+p—n)yp,m_”(91/, ¢I’)jp(kr,l)A(ma n,—K,v, p) (3)
p
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where
A(m,n,—p,v,p) =(-1)"[(2n + 1)(2v + 1)(2p + 1)/47r]%

Goor ) e

n—m)!2n+1
Yam(8,4) = (-1)™ [E—n—'_'{_—n—;)‘, y

with the property that Y, _m(6, ) = (=1)"Y,(6,6), and jn(z) is a spherical
n v p
m o4 oq |
is related to the Gaunt coefficients {1, 9]. The relation between r, r', and r” is
shown in Fig. 1. In (2), it is seen that (v,u) € S where S is a set defined by
S={(v,p)|0<v<o0,—v < u<Lv,v €L puc€l}, where Z is the set of integer
numbers. Similarly, (m,n) € S also in (2).

and

1
2 .
] P™(cos )™, (3b)

Bessel function, and is the Wigner 3j symbol. A(m,n,—u,v,p)

/

/! 1"

r p

Figure 1. The relationships between r, r', and r”; and p, p’, and p”
for the addition theorems in three and two dimensions respec-
tively.

For real k, it can be shown that B,y nm is a unitary matrix, i.e.
Z ﬂ;/m/,vﬂﬂup,nm = 5nm,n’m’ (4)
vp

or B 1o -Ft where B is the translation matrix.
Furthermore, it can be shown that for real k,

,Bnm,wt = (_l)n_uﬂ;p,nm (5)

Since translating in the negative r’’ direction is the inverse of translating in the
positive r" direction, it follows that

Blr-¢.¢"+m) =B (¢",¢") =B ¢") (6)
Note that if only N terms are kept in the summation over v, the outer two
summations over v and g will result in (N + 1)2 ~ O(N?) terms. If n in (2)
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is such that n =0, 1, ---, N/, and —n < m < n, then there will be O(N'2)
terms over the mn indices. Consequently, the dimension of the translation matrix
Brunm is O(N?) x O(N'?). But the calculation of Byp,nm involves a summation
over p as shown in (3). Because the Wigner 37 symbols are only nonzero when
n+v 2 p 2 [n—v|, the number of terms in the summation over p is proportional
to n. Consequently, the computer time needed to calculate the 8y, nm matrix is
O(N'3N?). Moreover, the calculation of the Wigner 3j symbols involves a large
number of factorials. Hence, a large amount of effort is expended in calculating
the Gaunt coefficients.

In order to reduce the computational effort for finding the Gaunt coefficients,
recurrence relations have been derived for them [1, 11]. We shall call these re-
currence relations the Bruning-Lo-Fuller recurrence relations. However, if the
translation is not in the z-direction, the recurrence relations are rather complex,
and the reduction of computer time by a small factor is observed [12]. Even though
the Bruning-Lo-Fuller recurrence relations expedite the calculation of the Gaunt
coefficients, the computational complexity of calculating the By, nm matrix is
not reduced since the summation over p in (3) is not removed.

In view of this, a more efficient way of calculating the translation matrix Byunm
is needed. Hence, recurrence relations expressed more directly in terms of Byu nm
would be more expedient. Such recurrence relations shall be derived. As shall
be shown, the calculation of the addition theorem using such recurrence relations
will reduce its computation complexity. The initial value for the recursion will
make use of the addition theorem for the spherically symmetric harmonic, which
has the following simple form [8, p. 194 or p. 594],

Yoo(8, $)io(kr) = > 3 Yuu(8', )i (kr' )Yy (8", 8" g (k") Wam(~1)P+Y
v=0p=—v

(7)

Busoo = (—1)FHVaxYy, (6", ¢" )i (kr") (7a)

is known in a very simple form for (v,u) € S. Notice that 8, 00 = (—1)‘“ﬂ,",‘ﬂ’oo

Hence,

if k is realt y,and By o could be calculated recursively because Py (cos 9" ) and
Ju(kr") could be calculated recursively.

II. DERIVATION OF USEFUL FORMULAS

Before deriving recurrence relations for the scalar addition theorem, it is useful
to establish some important formulas from which the recurrence relations could
be derived. First, using the fact that* [13, 14]

n+

Ljn(r) (8a)

3 n(r) = =sng1(r) + Zin(r) = jnoa() =

! When k is complex, the relation still holds if the conjugation implies that only
e~ " in Y, —, is conjugated.
*oris normafi‘zed here so that k= 1.
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0 .m m cos 8
%Pn (cos ) = ==

it can be shown that

o jn(r) Py (c05) = ~ cos 6P (c0s )jn41(r)

P™(cos8) — Pt (cos 6) (8b)

+ M[(n — m) cos §P(cos 6) + sin § P71 (cos 8)] (9)
"
It can also be shown thatf
(n + m)P™ | (cos ) = (n — m) cos § P (cos 8) + sin § P71 (cos §) (10a)

cos P (cosh) = T [(n —m +1)P} (cos ) + (n + m)Py" (cos8)] (10b)
Using (10a), (10b), and (8a), (9) could be simplified to
0 . n—m+1,
3, 9n(r) Py (cosb) = — anﬂ(r)ﬂﬁﬂcos 6)
n+m, m
+ G ljn_l(r)Pn_l(cos 6) (11)

‘where PI",(cosf) =0 when m > n — 1. With the definition of Yam(6,¢) given
by (3b), it can be shown from (11) that

(n+m+1)(n—m+1) 1

2 inr)¥am(6,8) = - | e (7)Y (6, )

(2n+ 1)(2n + 3)
+ e i am(8) (12)
In other words,
o nm(®) = af b1 m(E) + @1 () (13)
where
'¢'nm(1') = jn(r)Ynm(aa ¢) (13(1)
[+ m4+1)(n-m4+1) 7
@him = [ (2n+1)(2n +3) ] (135)
- _[(r+m)(n—m) ¥
nm = [(2n +1)(2n = 1)] (13¢)

Equation (13) implies that -‘% operator, when operating on ¥, (r), generates
a higher and a lower order multipole without affecting m.

1 Note that many recurrence relations for Lengendre functions in [13] are incor-
rect, but those in [14, p. 401] are correct.
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Next, an operator on %p;, that will change the values of m needs to be found.
To do this, we define a circulating operator *

g .0
C+ = % + Za—y (14)
It could be easily shown that in spherical coordinates
; 0 cosd 0 i 0
— ' |sin§— L
Cy=ce {sm981_+ " 09+rsin68¢>] (15)
Then, using (8a) and (8b), it can be shown that
Cq jn(r)P(cos 8)e'™$ = ei(m+1)¢{ sin P"*(cos §) [jn_l(r)
n+1, cosf . msin§ .
-— ]n(r)] - jn(r) PPt (cos 6) — - In(r) Py (cos 9)} (16)
Using the fact that
: 1 +1 1
sin 0P (cos §) = Gy 1[P:l'_"_1 (cos 8) — P41 (cos 8)] (17)
and (10b) for m — m + 1, we have
. m im¢ elm+1)¢ . » pm+1 . m+1
Cin(r)Py(cos )™ = “W[Jn-l(T)Pn_l (cos6) + Jni1(r) P, (cos6)]
(18a)
Consequently, we can show that
Cinm(r) = b;m'/’n—l,m+1(r) + b:m¢n+1,m+1(l') (18b)
where
1 1
= (n=m)(n—m-1)]2 = (n+m+2)(n+m+1)]2 (18¢)
T\ T en )21 | 0 T |7 (@2n+1)@n+3) ¢

The above formulas (13) and (18b) will be used to derive the recurrence rela-
tions for the addition theorem.

III. THE RECURRENCE RELATIONS

An addition theorem for spherical harmonics can be written as
o0

14
¢nm(r) = Z Z "/)up(l'l)ﬂup,nm (19)
v=0 p=-v
where v is summed from 0 to oo, while u is summed from —» to v. Since
5‘9; = 52—,, operating both sides of (19) by % yields

0 v
a:mz/’n+1,m(r) = _a;m"/’n—l,m(r) + aj ¢V+1,u(r,)ﬁuu,nm
m

v=0p=—v
oo v

+Z Z a;p%bu—l,p(r/)ﬂvu,nm (20)
v=0pu=—v

* This is the same as the raising operator in [8, p. 62].
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By changing v+ 1 — v in the first sum, and v — 1 — v in the second sum, we
have

00 v—1
Gttt m(®) = = Gum¥no1m(®) + Y D $uu)a Bt pnm
v=1p=—(v-1)
) v+1
+ Z Z '¢'1/p(r’)a;+1,uﬂu+l,p,nm (21)
ve=1p="(4+1)
By noticing that a_-*—-l,O =0, aj——l,:hu =0, a(T,O =0, and a;+1,:l:(u+1) =0, the

limits of the summations in (21) can be rewritten as

avtm¢n+1,m(r) = ‘a;m"/)n—l,m(r) + Z Z "/)uy(rl)

v=0pu=—v

: [aj_l,”ﬂu—l,y,nm + a;+1,,1,31/+1,u,nm] (22)

Using (19) to expand ¥pn41m(r) and ¥p_1m(r) as well and equating terms in
the series, we have

a;’:_mﬂup,n+l,m = "a;mﬂup,n-l,m + a:-_l’,‘ﬂu—l,p,nm + a;+1’#ﬂu+1,p,nm (23)

Equation (23) allows one to find Byyn41m for (v,u) € S if By n_1m and
Byp,nm are known for (v,u) € S. Hence, given the addition theorem for the
(n—1,m) and (n,m) harmonics, that for (n + 1,m) harmonics could be found.
Notice that ay,,, = 0 so that the (n,m) harmonic alone can be used to determine
the (n+1,m) harmonic when n = m. Hence, the initial value for the recurrence
relation (23) can be obtained from By, nm if they are known.

The recurrence relation in (23) does not cycle in m. Therefore, another recur-
rence relation is needed if the addition theorem for different m values are needed
as well. To do this, we apply the C} operator on (19). Note that the C4 oper-
ator is also coordinate independent so that it has the same effect on ¢pm(r) and
Pyu(r'). Consequently, we have

00 v
b;m’/)n+1,m+1(r) + b;m¢n—1,m+1(r) = Z Z btp¢u+l,p+1(rl)ﬂup,nm

v=0p=-v

+Z Z b;p¢u—1p+1(l'l)ﬂr/ﬂ,nm(24)

v=0p=-—v
By letting v+ 1 — v, and g+ 1 — u in the first term and v — 1 — v, and
g+ 1 — p in the second term in (24), we have

00 v
bIm¢n+1,m+1(r) + br:m"/’n—l,m+1(r) = Z Z 1/)1/;4(1',)1’:-_.1,u_lﬂu—l,p—l,nm
v=1pu=—v+2

oo v+2

+ Z Z T/)V/,t(rl)b;_'_1,p_1ﬂu+l,p—l,nm (24a)

v=—1p=—v
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Using arguments similar to that for (21), the summation indices could be rear-
ranged so that

bim¢n+l,m+1(r) = - b;ml/’n—l,m+1(1') + Z Z ¢uu(r,)

v=0p=—v

[bj-_lyp_lﬂu—l,p—l,nm + b;+1,l,_1,31/+1,/1-—1,nm] (25)
By the same token as (23), a recurrence relation can be derived such that

b:mﬂup,n+l,m+l = - b;z—mﬂl/;l,n—l,m-i-l + bj_l,ﬂ_lﬂu—l,p—l,nm

+ b;+1’“_1ﬂu+l,u—l,nm (26)
Equation (26) allows the addition theorem for (n+1,m+1) harmonic to be found

if the addition theorems for (n —1,m + 1) and (n,m) harmonics are known. If
we let m = n in (26), then by, =0, and (26) becomes

b:nﬂuﬂ,n+l,n+l = b;,’__l,;,_lﬂv—l,p—l,nn + b;+1)”_1181/+1,y—1,nn (27)
Hence, given Byunn for (v,u) € S, Byuntint1 can be found for (v,p) € S.
In the discrete space of nm shown in Fig. 2, the coefficients f,, nm are defined

only for |m| < n. They are zero otherwise. Furthermore, using the property of
Yn,~m(6, ¢) immediately following (3b), it can be shown that
ﬂup,n,—-m = (‘1)u+mﬂz,—p,nm (28)
Now, if the addition theorem is needed for the harmonic at A, then (27) can be
first used to derive the addition theorem of the harmonic that corresponds to B
from the By 00 values. Subsequently, (23) could be used to derive the coefficients
corresponding to A from B. Equation (28) can then be used to derive fByun —m
“for (v,u) € S. Other ways of using the recursion formulas (23), (26) and (27) are

ible.
possible n

o m

Figure 2. The translation matrix element B,y nm at A can be found from
Bup,00 at O. The recurrence relations can be used first to yield
the value of Byunm at B where n = m. Then the value of
Byunam at A can be derived from that at B using the recur-
rence relations.
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Equation (23) is like a finite difference equation where the values of By ni1,m
are obtained from Byun_1m> Bv—1pnm,» and Pui1ynm- Similarly, i (27),
Bupnt1,n+1 is determined from By,_1 4 1 nm and Byy1 1 nn- Hence, starting
with the initial values Byu 00 for 0 < v < N, the Byynm constructed reduces
in the length over v when n is increasing. Therefore, if the translation matrix
Byyunm is needed for 0 < v < N, and 0 < n < N'. the initial values on the v-
axis as shown in Fig. 3a where 0 < v < N 4+ N'. (Note that in Fig. 3, each point
of v implicitly embeds a range of —v < g < v. The same statement applies to
each point of n.) Extraneous elements of By, nm are generated over the domain
S when Byu nm is desired over the domain A.

n

N' (N, N')
(a) N>N’

© N N/ NN

Initial value
n
N+N’
S

initial
value
(b) A

0 N v

Figure 3. The recurrence relations work like an initial-value problem.

(a) K Byynm is required in A where 0 < v < N, 0<n < N/,
then the initial value 8, 40 for 0 <v < N 4 N' is required on
the n =0 line.

(b) Alternatively, the values of By nm in A can also be derived

from the initial values at ¥ =0 line for 0 < n < N + N’
Extraneous values of 8, nm are generated over S. When N >
N’/ it is more efficient to use case (a), and when N < N/, it
is more efficient to use case (b), so that the area of S does not
become exorbitantly large.
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When N’ > N, the domain S could be larger than the domain A, and hence,
the method outlined used to generate the translation could be very inefficient. In
this case it will be expedient to use the initial values on the n-axis. It can be
shown from (5) and (7a) that

Boonm = (—=1)" Brm,00 = (—1)"Var Y (6", ¢")jn(kr") (29)
This could be used on the n -axis as initial values. A recurrence relation useful for
this mode of application can be obtained from (26) by setting y = —v, yielding

bzmﬂu,—u,n+1,m+1 + br_zmﬂu,-u,n—l,m+1 = b;+1’_(,,+1)> ﬂu+1,—(u+1),nm (30)

The case where initial values are given on the n-axis is shown in Fig. 3.

Note that the number of steps required to find the coeflicients By, nm is always
equal to n and is independent of m. Furthermore, if the By nm for a given n’,
and —n' < m < n' is found, all the values of Bvpnm for n < n' are also found.
No large number of factorials is required in these recurrence relations. There-
fore, the computational complexity of finding B,y nm, the translation matrix, is
reduced, and the total computer time needed to construct Byunm is greatly re-
duced compared to that of (2). Now, if v =0,1,---,N and n =0,1,---,N’ so
that there are (N + 1)? terms corresponding to the vy index, and (N’ 4 1)2
terms corresponding to the nm index, then the computer time needed to com-
pute the By, nm translation matrix is proportional to N 2N'2. This is of reduced
complexity compared to calculating this translation matrix using the Gaunt co-
efficients.

The same recurrence relations can also be used to construct ayynpm from
Qyp,00, Where aypnm is the translation matrix for spherical Hankel functions
defined in {8, p. 594]. The above recurrence relations have also been verified
by a numerical implementation and comparing with the method using Gaunt
coefficients. The recurrence relations give the same result as the method using
Gaunt coefficients, but is much more efficient when N is large. For computing a
B matrix which is 25 x 25, the increase in speed could be as much as 100 times,
and the difference is more significant when N becomes large.

From (3), it is seen that when |n — v| > kr", the value of B,y nm becomes
very small. In this case, the result from the recursions becomes unstable just as
that for Bessel functions [13, p. 385]. In this case, the initial value on the v axis
could be used to calculate all the elements for which n < v, and vice versa for
the initial value on the n axis.

IV. CONCLUSIONS

Efficient recurrence relations for the elements of the translation matrix are derived.
These recurrence relations are much more efficient than the previous ones. The
efficient evaluation of the addition theorem is important in a number of scattering
applications, especially in recursive algorithms.
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